Global Precipitation Measurement

System Definition Review Mission Requirements

December 6-8, 2005

David Bundas 301/286-5573 David.Bundas@gsfc.nasa.go v Goddard Space Flight Center

L1 Requirements

- Flow from Science
- Allocation to Segments
- Driving Requirements

Level 2 Requirements

- Science Requirements
- Mission-level Requirements
- Element Requirements

Status

L1 Overview - Flow from Science

Earth Science Enterprise GPM Science Objectives GPM Science Drivers Science Questions Direct * Global Coverage provide Contribution PrecipitationMeasurement precipitation rates with 3-hour average Variability- I-1 Global Precipitation to Capability- advance precipitation measurement capability from space revisit over 80% of the globe. Response- III-1 Clouds & Hydrology to achieve global sampling * Measure 4-D structure at 5 km Consequences- IV-1 Local Weather * Water/Energy Cycle Variability resolution of rainfall rates, estimate drop Prediction-V-1 Weather Forcast Answering advance understanding of the global size distribution, and detect snowfall. V-2 Climate Variation Science water/energy cycle and fresh water Questions * Accuracy - Bias error<10% in V-3 Long Term Climate availability. * Climate Prediction improve instantaneous rain rate at 50 km climate prediction capability. resolution between S/C and GV data. * Weather Prediction improve * Precision - Random errors <25% at numerical weather prediction skills. 10 mm/hr and <50% at 1 mm/hr. * Hydrometeorological Prediction **NASA Program Constraints** advance flood-hazard and fresh-* Latency - Deliver science data water-resource prediction capabilities products within 3 hours of observation * Budget time. * Schedule- LRD of Core S/C shall be December 2010 * Partnerships- Utilize JAXA contributions and coordinate schedules * Lifetime- 3 years required, 5 year consumables * Reliability Ps > 0.7 of returning instrument science data for 3 years **Level One Performance Requirements Science (3.1.1)** Space Segment (3.1.2) Launch Segment (3.1.4) **Ground Segment (3.1.3)**

L1 Overview – Allocation to Elements

Level 1 Performance Requirements

Level One Performance Requirements

Science (3.1.1)

- 3.1.1.1 Quantify rain rates and PSD.
- **3.1.1.2** Provide precipitation rates with 3-hour average revisit over 80% of the globe.
- **3.1.1.3** Deliver swath data within 3 hours of observation time.
- **3.1.1.4** Provide rain rate at 50 km resolution, bias < 10% over 90% of the globe.
- **3.1.1.5** Provide rain rate at 50 km resolution, random <25%-50% over 90% of the globe.
- **3.1.1.6** Utilize both active and passive measurement techniques. Use DPR to calibrate passive radiometers.
- **3.1.1.9** Provide analyses of precipitation: instantaneous rate, 3-hour rate, daily accumulation, monthly accumulation, and outreach products.

Instruments (2.4):

* Utilize multiple instruments to achieve scope of precipitation observations

Space Based (2.4) -

- * Dual Frequency Precipitation Radar (Provided by JAXA)
- * Multi-channel, Polarized, Conical Scan, Passive Microwave Radiometer

Ground Based (3.1.1.8) -

* Utilize ground-based instrumentation for in-situ measurement used for satellite algorithm refinements.

Space Segment (3.1.2)

- 3.1.2.1 The NASA developed space assets shall have a design life of 3 years with consumables sized for 5 years.
- 3.1.2.2 Ensure that the high frequency channels of GMI have a design life of 14 months.
- 3.1.2.3 The NASA developed space assets, excluding LV, shall have Ps> 0.70 to return science data.
- **3.1.2.4** Coordinate orbit architecture of NASA S/C with partner constellation S/C
- 3.1.2.5.1 Develop a Core S/C that will accommodate the JAXA DPR and NASA GMI.
- **3.1.2.5.2** Develop a constellation S/C that will accommodate the NASA GMI.
- **3.1.2.6** NASA Provided S/C shall meet the Orbital Debris Requirements.

External Agreements (3.2)

3.2.1 Space Assets:

Establish domestic and International agreements to access required apace assets and data.

3.2.2 Ground Assets:

Establish domestic and international agreements to access required ground validation assets and data.

Products and Applications (3.3)

- **3.3.1** produce research, immediate, and outreach precipitation products.
- **3.3.2** Make products available to decision-support systems and processes.

Public Outreach Data Access (3.4):

* Engage in an education and outreach program.

Ground Segment (3.1.3)

- **3.1.3.1** Provide ground system and mission operation support services.
- **3.1.3.2** Provide services to capture, process, and deliver science data for science processing.
- **3.1.3.3** Provide a science data processing system.
- 3.1.3.4 Provide a Ground Validation System.

Launch Segment (3.1.4)

- **3.1.4.1** The launch vehicle for the GPM Core Observatory shall be the JAXA provided H2A-202 Expendable Launch Vehicle (ELV).
- 3.1.4.2The GPM Core Observatory shall be launched from the Tanegashima Space Center (TNSC) Yoshinobu (H-II) Launch Complex located on Tanegashima Island, Janan
- 3.1.4.3 The NASA provided constellation spacecraft shall be launched on a domestic launch vehicle from a domestic launch site consist with its orbit parameters.

Key L1 Driving Requirements

- (3.1.1.2) Precipitation sampling Global coverage with 3 hour revisit times
 - Constellation of satellites, drives orbit definitions for NASA-provided assets
 - Ingest multiple data streams from NASA and domestic and foreign partners
- (3.1.1.1) Precipitation Measurement
 - Drop size distribution (DSD) measurement
 - Drives use of dual-frequency precipitation radar (DPR)
 - Drives co-alignment requirements
- (3.1.1.3) Swath Data Latency 3 hours
 - Drives Ground System
- (3.1.1.8) Ground Based Measurements
 - Ground-based measurements for satellite algorithm improvement
- (3.1.1.6) Calibration Standard
 - DPR/GMI provide the reference for other PMRs in the constellation
 - Drives geo-location requirement
- (3.1.2.1) Core Observatory Lifetime: 3 years
 - Overlap of 18 months with NASA Constellation Spacecraft
 - Consumables sized for 5 yrs
- (3.1.2.3) Reliability requirement is 0.7 for return of instrument data
- (2.2) Risk Classification: Class B mission per NPR 8705.4
- (3.1.2.6) End-of-Life disposal

Requirements Flow to Level 2

Level I Requirements

Mission:

Instrument: > Space Based

Ground Based

- Measurement
- Validation
- Products
- Duration
 - Launch
 - Science Data Science
 - > Science Products
 - Operations
 - Public Outreach

Other Sources

- > Formulation Study Results
- Science Workshops
- GSFC Guidelines

Level II Requirements

Science:

> Precipitation Types

- > Measurements
- > Coverage
- > Frequency & Accuracy

Mission:

- > Data Handling
- Payloads
- > Constellation Design
- > Calibration & Verification
- > Outreach

***Lamb Services**

Space Segment:

- Instruments
 - DPR
 - GMI
- Core Spacecraft
 - Performance
 - Accommodation
- Constellation Spacecraft
 - Performance
 - Accommodation

Oronal Segment:

- > NASA Mission Operations
 - S/C Flight Ops
 - Space/Ground Coordination
- > Ground Validation & Calibration
- Precipitation Processing System.
 - Product Development
 - Data Distribution & Archive

Σ

ш

œ

o s

Ø

ш

Σ

Z

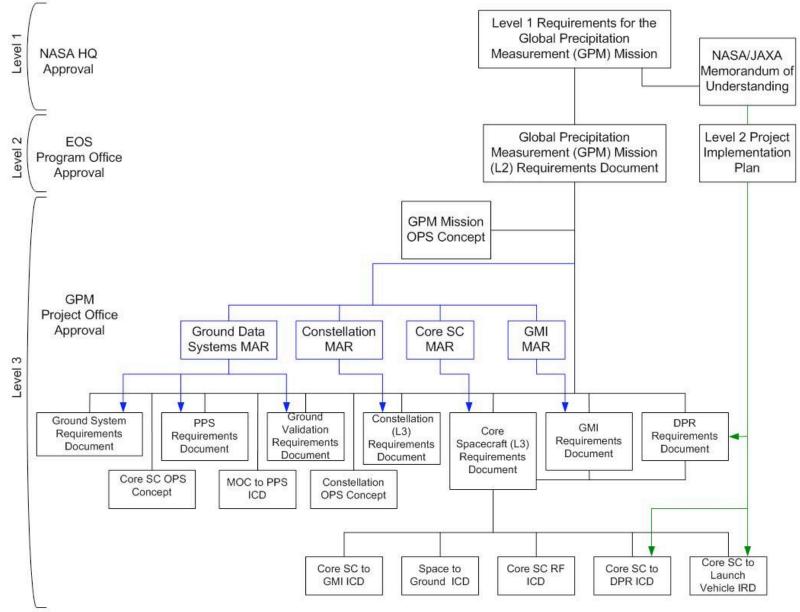
0

d

0

ш

Œ


۵

d

8

0

Requirements Tree

Level 2 Science Requirements

- (3.1.1) Discrimination between convective & stratiform precipitation types
- (3.1.2) Measurement range 0.3 to 110 mm/h over land and ocean
- (3.1.3) Detection of snowfall
- (3.1.4) Estimation of drop size distribution of precipitating particles
- (3.1.5) Estimation of 3-D latent heat release
- (3.1.6) Horizontal resolution 5 km between 65°N and 65°S
- (3.1.7) Vertical resolution 0.25 km between 65°N and 65°S
- (3.1.8) Coverage and Sampling average revisit time of 3h or less over 80% of the globe
- (3.1.9) Accuracy of instantaneous surface rain rates biases ≤ 10% at 50 km resolution relative to calibrated ground validation data
- (3.1.10) Precision of instantaneous surface rain rates random errors ≤ 25% at 10 mm/h and ≤ 50% at 2 mm/h at 50 km resolution relative to calibrated ground validation data over ocean. Over land, the requirements relaxes by a factor of two.
- (3.1.11) Error characterizations of instantaneous surface rain rates, associated radar reflectivity, and microwave brightness temperatures...

Level 2 Mission Requirements

- 2.2.1 Launch Readiness Date Core Observatory
 - Launch Readiness Date December 2010
- 2.2.2 Overlap between Core, Constellation
 - Launch Constellation within 18 months of Core Spacecraft
- 2.2.3 Spacecraft Selection
 - Select constellation to meet mission requirements
- 2.2.4 Constellation Make-up
 - Deals with shared s/c and partnerships
- 2.2.5 Mission Assurance Requirements
 - Comply with GSFC MAR
- 2.2.6 End-of-Life Reentry Requirements
 - Design-for-demise
- 2.2.7 Use of Metric Units
 - Per NPD
- 2.2.8 Use of CCSDS Standards
 - Standard Data Interface
- 2.2.9 Science Data File Transmission
 - Requires use of CCSDS File Delivery Protocol (CFDP)
- 2.2.10 Data Collection Completeness
 - 98 % of instrument data to be collected
- 2.2.11 Data Collection Efficiency
 - 95% of on-orbit time in science taking mode after 60 day checkout period
- 2.2.12 Space Asset Protection

Level 2 DPR Requirements

- 4.1.1 DPR Interface Requirements
- 4.1.2 DPR Lifetime
- 4.1.3 DPR Reliability
- 4.1.4 Operating Bands
- 4.1.5 Horizontal Resolution
- 4.1.6 Vertical Resolution
- · 4.1.7 Swath Width
- 4.1.8 DPR Data Rate Allocation
- 4.1.9 Calibration

Level 2 GMI Requirements

- · 4.2.1 GMI Measurement Channels
- 4.2.2 GMI Interface Requirements
- · 4.2.3 GMI Lifetime
- 4.2.4 GMI Reliability
- 4.2.5 GMI Earth Incidence Angle
- 4.2.6 GMI Contiguous Coverage for Channels 1 through 7
- 4.2.7 GMI Partial Coverage for Channels 8 through 13
- · 4.2.8 GMI Resolution
- · 4.2.9 GMI Swath Width
- 4.2.10 GMI Data Allocation
- 4.2.11 Error Characterization of Level 1 Brightness Temperature Products Channels 1 through 9
- 4.2.12 Error Characterization of Level 1 Brightness Temperature Products - Channels 10 through 13

Key Core Spacecraft Requirements

- (5.3) Lifetime 3 years with 5 years of consumables
 - Satisfies L1
- (5.4) Reliability
 - Provides a means to evaluate reliability design decisions
- (5.10.4, 5.10.5) Geolocation of Measurements DPR, GMI
 - Needed to relate measurements to models and co-observations
- (5.5, 5.6) Orbits Launch, Operational, Maintenance
 - Defines orbits to satisfy coverage and mission life
- (5.7) Launch Vehicle Capability
 - Defines mass to orbit
- (5.10.X) Instrument Accommodation
 - Defines technical resources needed by the instruments
- (5.10.3) Nadir Pointing Accuracy
 - Needed to support geolocation and co-observations
- (5.11.X) Communications
 - Defines uplink, downlink, data allocations

GPM Key Constellation Spacecraft Requirements

- •(6.3) Lifetime 3 years with 5 years of consumables
 - -Satisfies L1 requirement
- (6.5) Reliability
 - -Provides a means to evaluate reliability design decisions
- (6.11.4) Geolocation of Measurements GMI
 - Needed to relate measurements to models and co-observations
- (6.6) Orbit
 - -Orbit to be selected to satisfy coverage and mission life
- (6.11.X) Instrument Accommodation
 - -Defines technical resources needed by the payload
- (6.11.3) Nadir Pointing Accuracy
 - -Needed to support geo-location and co-observations
- (6.11.12) Communications
 - -Defines uplink, downlink, data allocations

Key Mission Operations Requirements

Mission Operations:

- (7.1.22) Health & Safety Standard capability
- (7.1.38) Availability Ensures ops center is up for critical operations
- (7.1.15) CMD & TLM Standard capability
- (7.1.15-7.1.21) Data Handling and Interfaces ops co-ordinates all of the assets
- (7.1.31) Flight Software Maintenance Standard capability

Instrument Operations:

- (7.1.20) Commanding
- (7.1.29) Performance Monitoring

Space/ Ground Link:

- (7.1.1) Space Network Continuous Return link for SC HSK/GMI data
- (7.1.41) Data Loss Allocation
- (7.1.8) Contingency Operations Switch to ground if TDRSS is lost

Key Processing and Ground Validation Requirements

Precipitation Processing System

- (7.2.2) Ingest Data from GPM and Partner data sources
- (7.2.12) Research Products Definition
- (7.2.15) Geolocation of Instrument Data
- (7.2.18) Science Algorithm Support
- (7.2.21) Research Product Latency
- (7.3.1, 7.3.2) Data Distribution and Archiving

Ground Validation System

- (7.4.1) Assessment of Satellite Precipitation Estimates
 - Using ground-based measurements
- (7.4.3.1) Ready for Operations
 - 6 months prior to Core spacecraft launch

0 Ø Σ 0 0 0

L1 Requirements Status:

- Under review with HQ
- Signoff occurs prior to GPM MCR in late 2006

L2 Requirement Status:

- L2 has been reviewed/baselined within GPM Team
 - After updated based on SDR comments, L2 will go into signature cycle
 - L3's are in draft state, signature ready at PDR
- All L1/L2 Requirements have been Allocated to GPM Elements
 - Traceability from L1 to L2 captured in DOORS
 - > Traceability from L2 to L3 captured in Excel spreadsheet
 - > As L3's are baselined, they will be imported into DOORS

œ > Σ 0

Day 1 - December 6, 2005 Location: NASA GSFC B16W-N76/80

Time	Section	Event	Presenter
8:30 AM		Logistics & Announcements	Durning
8:35 AM	1	Introduction	Durning/Ho
8:45 AM		Charge to Review Team/RIDs: Purpose & Review Criteria	Но
8:55 AM		HQ Overview	Neeck
9:10 AM	2	GPM Mission Overview	Durning
9:55 AM	3	Science Requirements	Hou
10:25 AM		Break	
10:40 AM	4	Mission Requirements	Bundas
11:10 AM	5	Mission Architecture	Bundas
11:55 AM		Lunch	
12:55 PM	6	Systems Engineering Processes	Bundas
1:40 PM	7	System Safety and Mission Assurance	Toutsi
1:55 PM	8	External Interfaces	Hwang
2:10 PM	9	Dual Precipitation Radar (DPR) Overview/Requirements	Woodall
2:55 PM		Break	
3:10 PM	10	GPM Microwave Imager (GMI) Overview/Requirements	Flaming/Bidwell
4:10 PM	11	H-IIA Launch Vehicle	Woodall
4:30 PM		Review Team Caucus	
4:40 PM		End of Day 1	

